
 

 1 

An adaptive element subdivision method for evaluation of 

weakly singular integrals in 3D BEM 

Jianming Zhang*, Chenjun Lu, Xiuxiu Zhang, Guizhong Xie, Yunqiao Dong, Yuan Li 

(State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan 

University, Changsha 410082, China) 

*Correspondence to: Jianming Zhang 

College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China 

Telephone: +86-731-88823061 

E-mail: zhangjm@hnu.edu.cn  

 
Abstract: A general adaptive element subdivision method is presented for the numerical 

evaluation of weakly singular integrals in three-dimensional boundary element analyses. In our 

method, the element is subdivided into a number of patches through a sequence of spheres with 

decreasing radius. The patches obtained by our method are automatically refined as they 

approaching the source point. Consequently, each patch is “good” in shape and size for standard 

Gaussian quadrature, and hence high accuracy can be achieved by a small number of Gaussian 

sample points. Our method is applicable to any shape of element with arbitrary location of the 

source point inside, at vertices or on edges of the element. Numerical examples are presented for 

planar and curved surface elements. The results demonstrate that our method can provide much 

better accuracy and efficiency than the conventional subdivision method. 

Keywords: BEM, weakly singular integral, element subdivision, Gaussian quadrature. 

1. Introduction 

It is well-known that accurate calculation of weakly singular integrals is of crucial 

importance for successful implementation of the boundary element method (BEM) [1-8]. Element 

subdivision is one of the most widely used methods for nearly or weakly singular integration. In 

the conventional subdivision method, the sub-elements which are also called patches are obtained 

by simply connecting the singular point with each vertex of the element [9]. Kane has proposed 

the reusable intrinsic sample point algorithm which employed a discrete number of sets of 

predetermined, customized, near-optimum, sample point quantities associated with the intrinsic 

boundary element [10]. This algorithm was performed using a predefined element subdivision 

template. Some other subdivision schemes have also been applied for discontinuous elements [11] 

by Banerjee. Zhang el al have used the conventional subdivision method coupled with a new 

coordinate transformation to remove singularities [12] and further developed an adaptive element 

subdivision method named Quad-tree subdivision [13] (see Fig. 1). All the above mentioned 

methods are performed in the local coordinate system of the element rather than in the physical 

coordinate system. Obviously, it may produce patches in “bad” shapes in case the element are 



 

 2 

curved or distorted or the element is irregular in shape. As patches in good shape in the parametric 

space may become bad when they are mapped into the physical coordinate system. Even for 

planar and regular elements, if discontinuous element is adopted, the patches obtained by the 

conventional method cannot be guaranteed to be suitable for Gaussian integration rules. For 

example, Fig. 2 shows a boundary mesh of a body with a fillet face. The elements shown in Fig. 3 

are taken from the mesh shown in Fig. 2. The subdivision (a) in Fig. 3 is for a continuous element, 

and (b) and (c) are for discontinuous elements. Numerical tests have demonstrated that, with the 

same number of Gaussian sample points (6×6=36), the accuracy of integration with the 1/r kernel 

on patches (a)-②, (b)-④ and (c)-④ is less than 1.0E-5%, on patch (a)-① is 0.05%, which is 

acceptable, but on patches (b)-①, (b)-②, (b)-③, (c)-① and (c)-② is bigger than 1%, which is 

completely wrong. From this example, it is seen that much attention should be paid to the 

subdivision scheme, particularly in case discontinuous elements are adopted in the BEM 

implementation. 

 

Figure 1. The Quadtree subdivision of an element. 

 

Figure 2. Slender Curved elements on the fillet face. 

 

Figure 3. Patches obtained by the conventional subdivision method. 

In this paper, a general adaptive element subdivision method called Sphere Subdivision 

Method is proposed. In proposed method, elements are not subdivided in the element local 

coordinate system but in the physical coordinate system. An element is subdivided into a number 

of patches through a sequence of spheres with decreasing radius, and the obtained patches are 

automatically refined as they approaching the source point. Therefore, each patch is ensured to be 

“good” in shape and size for standard Gaussian quadrature (The word “good” here means that the 
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area of the patch is as large as possible under the condition that the fundamental solution within 

the patch can be accurately interpolated by low order polynomials). Our method is applicable to 

any shape of elements, no matter where the source point is located, namely, it’s suitable for both 

continuous and discontinuous elements. Detailed description of sphere subdivision method is 

presented in Section 2. In Section 3, numerical examples for planar and curved surface elements 

are presented to demonstrate that high accuracy can be achieved by a small number of Gaussian 

points with the proposed method.  

2. Adaptive element subdivision method 

To achieve the best balance between accuracy and efficiency, it is desirable that subdivided 

patches closer to the source point have relatively smaller sizes. To guarantee this, we use a 

sequence of sphere centered at the source point with decreasing radius to cut the element, 

recursively. With this method, no matter where the position of the source point is located in the 

element, patches with “good” shape can always be obtained. Since this subdivision method is 

performed in the physical coordinate system, it is a common algorithm for every kind of element. 

Before describing our method, we define some symbols first.                                                                                                                                         

 

Figure 4. First step of element subdivision. 

For a 3D boundary element in which the source point is located, as shown in Fig. 4, the 

following symbols are defined: 

P——the source point; 

j
iV ——the i-th vertex in the j-th step; 

j
iE ——the i-th edge in the j-th step; 

j
iR ——the line segment connecting P and j

iV ; 

j
ikEP ——the k-th intersection of j

iE with the j-th sphere, k=1, 2; 

j
iRP ——intersection of j

iR with the j-th sphere； 

j
iL ——distance between p and j

iV ;  
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j
iD ——distance between p and j

iE ; 

Let Lmax= max{ , }j j
i iL D , Lmin= min{ , }j j

i iL D  (Lmin≠0).  

In each step, a sphere is constructed with its center at P, and its radius is defined as: 

max
j

jr L                                (1) 

where   is empirical value. In this study,   is taken as 0.25. 

Taking the first step for example, as shown in Fig. 5, a sphere is constructed centered on P 

and then intersections of sphere and lines, i.e. points 1
01EP , 1

1RP , 1
2RP , 1

3RP and 1
31EP , are connected in 

order. Patches are obtained as shown in Fig. 6. At the same time, intersections take the place of the 

original vertexes to be new vertexes in the next step, and edges have also been renewed for the 

next step. Repeat this process and a certain number of new patches will be obtained after each step. 

This algorithm is similar to advancing front method which needs to update vertexes and edges in 

every step [14].  

 

Figure 5. A sphere is constructed centered on P. 

 

Figure 6. Patches obtained after the first step. 

As the procedure repeating, the value of rj gradually decreases. It is possible that the 

following situation as shown in Fig. 7 occurs, in which two points of intersection are too close to 
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obtain patches with “good” shape or size.  

 

Figure 7. The situation we are trying to avoid that the two intersections are too close. 

To avoid this situation, a solution is put forward: when minj Minr L  , where 2Min  , the 

intersections and the source point will be connected as illustrated in Fig. 9(c) and the procedure 

stops cycling. By now, all the patches are obtained. For the patches containing source point, an α- 

β transformation is used to eliminate the singularities [12]. The α-β transformation is expressed as 

follows: 
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Combining Eqs. (2a), 2(b) and (2c), the expression for obtaining the Cartesian coordinates x and y 

can be written as: 

   

   
0 1 0 2 1

0 1 0 2 1

x x x x x x

y y y y y y

 
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

    
                     (3) 

The Jacobian of the transformation from the x-y system to the α-β system is S , where 

                           0 1 1 2 2 0 0 2 1 0 2 1S x y x y x y x y x y x y                       (4) 

and S  keeps constant over the triangle.  

From Eq. (2) to Eq. (4), it can be noted that the new coordinate system is much simpler to 

implement than the polar coordinate system. This is due to the fact that both α and β are 

constrained to the interval [0, 1] in each triangle, thus there is no need to calculate their spans.  
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Figure 8. The α-β coordinate transformation. 

 

Figure 9. Patches obtained in subdivision steps: (a) the first step; (b) the second step; (c) the last 

step. 

The main algorithm for creating patches is described by the following flow chart shown in 
Fig. 10. 

 

Figure 10. Flow chart of subdivision algorithm. 

There are two factors that considerably decrease the accuracy of α-β transformation for 
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patches containing source point. First, the lengths of two adjacent edges intersecting at the source 

point differ largely, but from the description of the procedure above, it can be easily seen that this 

case will not happen in our method. Second, angle between two adjacent edges which intersect at 

the source point is larger than expected. In this case, each patch containing a large angle will be 

divided into two patches, until all angles meet the condition angle< diviAngle, where diviAngle is 

defined in the procedure.  

The other two problems can be seen from Fig. 9(c). Firstly, although the lengths of two 

adjacent edges of the patch are almost equal and the angles are small enough, total number of 

patches is very large which will cause much greater computational cost. Secondly, shapes of some 

patches without containing the source point are “bad”. In order to deal with these problems, 

merging operation will be introduced next.  

The merging operation will be used in three cases. Firstly, in a certain step, if the distance 

between j
ikEP and the vertex is smaller than an expected value d1, 

j
ikEP  will be moved to the 

adjacent vertex. Secondly, If the distance between j
iRP and the vertex is smaller than an expected 

value d2, 
j

iRP will be moved to the adjacent vertex. Thirdly, if the distance between j
iRP and j

ikEP is 

smaller than an expected value d3, 
j

iRP will be moved to j
ikEP . 

d1、d2、d3  are defined as follows: 

              1 1( , )j j
i id edgeFactor d V V    

2 jd radFactor r                         

3 jd radFactor r   

where edgeFactor=0.1 and radFactor=0.1. After the merging operation, new patches are obtained, 

as Fig. 11 depicts. We can see the number of patches is reduced and the shapes of patches are 

improved obviously compared with that in Fig. 9.  

 

Figure 11. Element subdivision after merging operation: (a) the first step; (b) the second step; (c) 

the last step. 

With the detailed description above, it can be clearly seen that our method has obvious 

advantages over conventional method. Firstly, the patches containing source point have much 

better shape than those obtained by conventional subdivision method [1], while the remaining 

patches also have better shape due to the properties of sphere and merging operation. Secondly, as 

the patches obtained are automatically refined as they approaching the source point, Gaussian 
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sample points are set denser around the source point to get an accurate enough result. Away from 

the source point, Gaussian sample points are sparsely distributed, much fewer but enough to 

grantee an accurate result, so a large number of unnecessary Gaussian sample points are avoided. 

In the whole process, the number of patches and their size are determined adaptively by the 

position of singular point. In a word, with the adaptive element subdivision method coupled with 

the α-β transformation, the weakly singular integrals can be solved with higher accuracy and less 

computational cost. It should be noted that all the intersection points should be projected from 

physical coordinate system to element local coordinate system in this algorithm.  

3. Numerical examples 

To evaluate the effectiveness and accuracy of our method, in this section, several 

comparisons are made between our method and the conventional method for planar element and 

curved surface element. For the purpose of error estimation, relative error is defined as follows: 

Relative Error= n e

e

I I

I


                           (5) 

where In is the numerical solution, and Ie is the exact solution of the integral. 

We consider the numerical evaluation of the integral 

                               
1

4
I d

r
                                    (6) 

In all the numerical examples, the α-β transformation is used to remove singularities in the patches 

which contain the source point, while the remaining regular quadrilateral and triangular patches 

are respectively evaluated by the standard Gaussian quadrature and Hammer quadrature. The 

number of the Gaussian points m is determined by [15-17] 

     
3

4
2 2 8

ln(e/ 2) 10 ( ) 1
3 5 3 j

L
m p

r

 
    

  
                         (7) 

where p represents the order of the singularity (p=1,2,3). e denotes the error tolerance. L is the 

length of patch in integral direction. And rj is the sphere radius defined in Eq. (1). 

3.1 Examples of planar element  

In this part, adaptive element subdivision and corresponding numerical result are presented 

for planar quadrilateral element and slender element. Vertex coordinates of planar quadrilateral 

element are (1, 1), (-1, 1), (-1, -1), (1, -1) in the physical coordinate system, while vertex 

coordinates of slender element are (10, 1), (0, 1), (0, 0), (10, 0). As Fig. 12(a) and Fig. 13(a) show, 

the source points are almost coincident with the vertexes, with their coordinates are (0.99, 0.9) and 

(9.0, 0.9) respectively. As Fig. 12(b) and Fig. 13(b) show, the source points are very close to the 

edges, with their coordinates are (0.0, 0.99) and (5.0, 0.9) respectively. 

Fig. 12 and Fig. 13 show patches obtained with our method. On the right of each figure is the 

partial enlarged view of the part containing source point, from which we can see the patches of 
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both planar quadrilateral element and slender element are in “good” shapes and size.  

The accuracy obtained by both our method and the conventional method and the number of 

the Gaussian sample points used are listed in Table 1 and Table 2 for different locations of the 

source point. It is seen that to obtain the same level of accuracy, our method needs much fewer 

sample points, and thus, considerably increases the computational efficiency. On the other hand, 

when the number of Gaussian sample points used is the same, the accuracy obtained by our 

method is 5 to 7 orders of magnitude higher than that by the conventional method. 

         

(a) The source point is near the vertex         (b) The source point is near the edge 

 Figure 12. Subdivisions of planar quadrilateral element with our method.  

 

(a) The source point is near the vertex 

  

(b) The source point is near the edge 

Figure 13. Subdivisions of planar slender element with our method. 

Table 1: Numerical evaluation for planar element using the same number of Gaussian sample 
points. 

Gaussian points number Relative Error 
Planar 

element 
Source 
point Conventional 

method 
Our 

method 
Conventional 

method 
Our 

method 
(0.99,0.9) 1200 1195 4.46e-004 2.37e-009 

quadrilateral 
(0.0,0.99) 1200 1191 2.10e-003 1.21e-010 
(9.0,0.9) 1200 1197 3.73e-004 1.35e-009 

slender 
(5.0, 0.9) 1200 1194 3.55e-003 3.66e-008 

 

Table 2: Numerical evaluation for planar element with Relative Error of the same order of 
magnitude 
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Gaussian points number Relative Error 
Planar 

element 
Source 
point Conventional 

method 
Our 

method 
Conventional 

method 
Our 

method 
(0.99,0.9) 6000 1209 3.30e-009 3.25e-009 

quadrilateral 
(0.0,0.99) 12000 843 1.77e-008 3.35e-008 
(9.0,0.9) 5200 1173 2.57e-010 2.74e-010 

slender 
(5.0, 0.9) 6000 834 1.19e-007 1.89e-007 

3.2 examples of curved surface element  

In this part, adaptive element subdivision and corresponding numerical result are presented 

for curved surface quadrilateral element and curved slender element. Vertex coordinates of the 

curved surface quadrilateral element are (1, 1, 1), (-1, 1, 0), (-1, -1, 1), (1 , -1, 0) , while vertex 

coordinates of the curved slender element are (10, 1, 0.5), (0, 1, 0), (0, 0, 0.5), (10, 0, 0). As Fig. 

14(a) and Fig. 15(a) show, the source points are almost coincident with the vertexes, with their 

coordinates are (0.99, 0.9, 0.9455) and (9.5, 0.95, 0.4525) respectively. As Fig. 14(b) and Fig. 15(b) 

show, the source points are very close to the edges, with their coordinates are (0.0, 0.99, 0.5) and 

(5.0, 0.9, 0.25) respectively. 

Fig. 14 and Fig. 15 show patches obtained with our method. On the upper right of each figure 

is a top view of the curved element. At the bottom is the enlarged view of the part containing 

source point. From the Fig. 14 and Fig. 15, we can see the patches of both curved quadrilateral 

element and slender element are in “good” shapes and size. 

The accuracy obtained by both our method and the conventional method and the number of 

the Gaussian sample points used are listed in Table 3 and Table 4 for different locations of the 

source point. From Table 3, it is seen that when the number of Gaussian sample points used is the 

same, the accuracy obtained by our method is 5 to 7 orders of magnitude higher than that by the 

conventional method. From Table 4, it is seen that to obtain the same level of accuracy, our 

method needs much fewer sample points, and thus, considerably increases the computational 

efficiency. The effectiveness and accuracy of our method are demonstrated again. 

            

(a) The source point is near the vertex         (b) The source point is near the edge 

Figure 14. Subdivisions of curved quadrilateral element with our method. 
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(a) The source point is near the vertex 

 

(b) The source point is near the edge 

Figure 15. Subdivisions of curved slender element with our method. 

Table 3: Numerical evaluation for curved element using the same number of Gaussian sample 
points. 

Gaussian points number Relative Error Curved 
surface 
element 

Source point Conventional 
method 

Our 
method 

Conventional 
method 

Our 
method 

(0.99,0.9,0.9455) 1200 1189 5.74e-004 1.14e-009 
quadrilateral 

(0.0, 0.99,0.5) 1200 1197 2.33e-003 1.48e-009 
(9.5,0.95,0.4525) 1200 1200 1.28e-003 1.97e-010 

slender 
(5.0, 0.9,0.25) 1200 1194 3.50e-003 3.58e-008 

Table 4: Numerical evaluation for curved element with Relative Error of the same order of 
magnitude 

Gaussian points number Relative Error Curved 
surface 
element 

Source point Conventional 
method 

Our 
method 

Conventional 
method 

Our 
method 

(0.99,0.9,0.9455) 6000 1225 5.84e-008 1.01e-008 
quadrilateral 

(0.0, 0.99,0.5) 16000 1039 1.48e-008 5.11e-008 
(9.5,0.95,0.4525) 6000 997 6.43e-009 5.09e-009 

slender 
(5.0, 0.9,0.25) 5400 822 4.13e-007 2.46e-007 

The results demonstrate that shapes of the patches for both planar and curved surface element 

are “good” with the proposed adaptive element subdivision method. Moreover, our method can 

provide higher accuracy and efficiency than the conventional method with fewer Gaussian sample 

points.  

4. Conclusions and future work 



 

 12 

A general adaptive element subdivision method for the numerical evaluation of weakly 

singular integrals on 3D boundary element was proposed in this paper. With a sequence of spheres 

and the merging operation, patches with “good” shape can be obtained for both planar and curved 

surface boundary element with the proposed method, no matter where the singular point is located. 

From the numerical examples, it has been demonstrated that comparing with the conventional 

method, the accuracy of results has been significantly improved by using the proposed method.  

On the other hand, to obtain the same level of accuracy, our method requires much fewer sample 

points, and thus, considerably increases the computational efficiency. Extension of our work to 3D 

nearly singular integral is ongoing. 
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